
Official 
Whitepaper

IN PRIVACY
WE TRUST

Current version
1.0 – November 9th, 2018



Table of Contents

BITCOINOTE WHITEPAPER 302 out of

Table of Contents

Online 
Payment 
Gateway

About BitcoiNote

In this whitepaper

Mining 
Improvements

Wallet 
Improvements

Express
Exchange

PAGE 4

PAGE 27

PAGE 15

PAGE 3

PAGE 3

PAGE 29

1

3

2

4



About BitcoiNote

In this whitepaper

BitcoiNote is a decentralized, public blockchain and cryptocurrency project 
that will make cryptocurrency deals more secure than ever. The private, fast 
and scalable coin is based on CryptoNight V7 and resolves Bitcoin’s issues.

BitcoiNote has gone through a period of tremendous 
growth. User feedback and our ongoing research have 
inspired the team to map out the future of BitcoiNote. 
As we listen to user feedback carefully we are 
convinced that these plans will fulfill the needs and 
requests of almost all our users.

Over the coming months we are going to introduce a 
large number of improvements, optimizations, new 
features and additional platforms. That includes the 
introduction of the online payment gateway, which will 
simplify online payments. Wallet improvements will 
include refactoring of the wallet and the introduction of 
the wallet on iOS, Android and the web. For miners we 
are pleased to introduce the merged mining feature 
and the ability to mine from mobile. Finally the team is 
working on preparations for the completely new 
BitcoiNote Express Exchange.

The future of BitcoiNote is almost here! Read along to 
discover what’s coming up.

BITCOINOTE WHITEPAPER 303 out of



Buyer initiates checkout process in merchant's 
website
Merchant sends "Create Transaction" request to 
Payment Gateway API, receives a transaction ID and 
stores it for reference. A temporary receiving wallet is 
created in the process
Merchant redirects buyer to Payment Gateway's 
payment page where payment information is 
displayed. Alternatively: Merchant receives BTCN 
payment information and displays it to the buyer

Buyer uses displayed payment information to send 
BTCN to Payment Gateway
Payment Gateway waits for the user's transaction to 
appear in memory pool (max. 30 minutes)
Merchant receives first push notification from BTCN
Merchant can decide whether this status is enough 
to process the buyer's order or whether full 
settlement is required

Payment Gateway waits for the transaction to reach 
a defined number of confirmations on the 
blockchain
Merchant receives second push notification from 
BTCN
If not done yet, merchant finishes the user's order
After one week (refund period), funds sent by buyers 
are paid out to the merchant's wallet

Online Payment Gateway

BITCOINOTE WHITEPAPER 304 out of

Initiation

Payment

Settlement

BitcoiNote strives to simplify online payments. A big step towards this goal is 
a full-service online payment gateway system. The principle of operation is:

‣

‣

‣

‣

‣

‣

‣

‣

‣
‣

1

PR
IN

CI
PL

E 
O

F 
O

PE
R

AT
IO

N



BITCOINOTE WHITEPAPER 305 out of

Registration Process

Checkout Flow

To register for the Payment Gateway, the merchant needs to create an 
account with their name, email address and BTCN wallet address. They will 
receive credentials to access the Payment Gateway API as well as the 
Merchant Portal.

There are two options for the checkout flow.

1 Very little implementation work required on the merchant’s side.
Unified user experience: Buyers are aware that they are paying via the 
BTCN Payment Gateway (with advanced features such as automated 
refund processing and a private communication channel to the 
merchant) which may increase the trust level.
Buyer is directed to a page hosted by the Payment Gateway to 
complete the payment. On this page, the buyer will be asked for their 
email address (for purpose of refunding in case of an incorrect 
payment amount), they will see instructions for executing the 
transaction, they will see status updates regarding their transaction 
and they will be redirected back to the merchant’s page once the 
payment is completed or was cancelled.
Upon email address collection, the buyer can decide whether to 
share this email address with the merchant or not. If not, the 
merchant may still contact the buyer until up to one week after the 
transaction was completed through the Merchant Portal (without 
seeing their actual email address).
Merchant can decide whether the payment should wait for full 
settlement or whether receiving the transaction in the memory pool 
is enough before the user is redirected back to the merchant’s page. 
In the latter case, the merchant can further specify whether an 
exception should be made in case of a too-low transaction fee or not.

‣
‣

‣

‣

‣

G
U

ID
ED

CH
EC

KO
U

T



BITCOINOTE WHITEPAPER 306 out of

2 Full control by the merchant, user never leaves their page.
Requires more implementation work on the merchant’s side.
Merchant needs to use the Payment Gateway API to get 
payment and status information, provide the user’s email 
address for refund purposes, display all necessary information 
to the user, etc.

Pending: Transaction was created by merchant (initialized with an 
amount, a description, required number of confirmations, an optional 
reference ID and optionally already including the user’s email address).
Received: BTCN transaction visible in memory pool (buyer has 
transmitted transaction, but it’s not yet included in a block). 

There is an additional “at risk” flag which is set if the BTCN
transaction fee is so low and/or the transaction size is so big that the 
transaction will most likely not be handled by miners anytime soon.

Settled: BTCN transaction received the defined number of confirmations 
on the blockchain (if zero was specified, this state will be reached 
immediately after “Received”).

‣
‣
‣

‣

‣

‣

EM
B

ED
D

ED
 

CH
EC

KO
U

T

Registration Process

Regular states



BITCOINOTE WHITEPAPER 307 out of

Additionally, there is a flag indicating that a transaction has “extraneous 
funds”. In case the buyer didn’t provide an email address, or the merchant 
uses the Embedded Checkout Flow and didn’t provide the user’s email, the 
only way to refund the extraneous funds is by the merchant calling the 
“Refund” API with a valid refund address.

There is also a flag “on hold” which may be set by the BTCN Payment 
Gateway staff in case of suspicion of fraud. It will block payout of the 
transaction to the merchant until this flag has been removed again.

Flags “partially refunded” and “fully refunded” will be set if a payment was 
already completed and was then partially or fully refunded. Refunds of 
extraneous funds or refunds because of a cancelled transaction won’t trigger 
these flags.

In rare cases, there may be an “unknown error” flag set which usually 
requires inspection by support. An example would be a refund transaction 
being rejected by the BTCN network.

Cancelled: Transaction was cancelled – includes a reason: Cancelled by 
user, cancelled by merchant or timed out (no transaction in memory 
pool after 30 minutes).
Failed: BTCN transaction was not included in a block within 72 hours and 
is no longer valid, or the block(s) in which it was included are now 
orphaned. Includes flags “was received” and “was settled” to indicate 
whether the transaction had been in the respective states before (to 
identify the case where, for example, the buyer’s order was already 
processed by the merchant before it became known that the transaction 
had failed).

‣

‣

Irregular states



BITCOINOTE WHITEPAPER 308 out of

If the buyer sent an amount which is too low, Payment Gateway will attempt 
to handle this case in a way which is transparent to the merchant, if possible. 
The buyer must send the full amount within the payment window of 30 
minutes for the transaction to be processed, even if they split it to multiple 
payments.
In case of multiple payments, the state of the transaction (received, settled) 
will be updated only when all the partial payments reached the 
corresponding status.
In any case, the merchant will receive a push notification about the partial 
payment, and if a buyer email is recorded, the buyer will receive an email 
informing them that they still have an amount left to pay, with instructions 
on how to complete payment.
In case of the Guided Checkout Flow, the user will see on the payment page 
how much is left to pay and will be asked to submit the remaining amount.
In case of the Embedded Checkout Flow, the merchant must react on the 
push notification and/or by checking the transaction’s status and show the 
relevant information to the user.
If after the payment window of 30 minutes the buyer did not yet send the 
full amount, the transaction will be cancelled and the already sent amount 
will be converted to “extraneous funds”. If an email address is recorded, the 
user will receive an email with instructions how to enter a refund address 
and get back their funds. If not, the merchant may use the “Refund” API to 
refund the extraneous funds.

Buyer sending too low an amount

Handling of Payment Errors



BITCOINOTE WHITEPAPER 309 out of

If the buyer sent an amount which is too high, Payment Gateway will process 
the transaction normally, but the “leftover” amount will be converted to 
“extraneous funds”. If an email address is recorded, the user will receive an 
email with instructions explaining how to enter a refund address and get 
back their funds. If not, the merchant may use the “Refund” API to refund 
the extraneous funds.

If the buyer sends an additional payment after the transaction was already 
completed, it will simply be turned into “extraneous funds” and handled like 
a payment with too high an amount (user is asked for refund address via 
email and/or merchant may use “Refund” API).
Note that after settlement of a transaction, the corresponding wallet address 
is monitored only for one week afterwards. If the buyer sends funds to an 
address which belongs to a transaction older than a week, it will be ignored, 
and the funds will be lost. The buyer or the merchant would have to contact 
support to resolve this situation.

If the buyer submits a BTCN transaction with a very low fee, it is unlikely that 
this transaction will be processed by miners. In that case, it would sit in the 
memory pool for 72 hours and then be discarded by the network.
Payment Gateway tries to detect such a case beforehand and will flag the 
transaction “at risk” if too low a fee is detected. If the transaction is indeed 
not included in the blockchain and expires after 72 hours, the transaction 
will reach a “Failed” state.

Buyer sending too high an amount

Buyer sending additional or duplicate payments

Buyer sending a payment with too low a transaction fee



BITCOINOTE WHITEPAPER 3010 out of

In rare cases (for example in the event of a chain split), blocks including 
already confirmed transactions may become orphaned, essentially voiding 
the transaction. In that case, the transaction will transition to a “Failed” state. 
The merchant can check the “was received” and “was settled” flags to 
understand if this means that they lost money by already processing the 
order and may take steps such as cancelling the user’s order if still possible.
Note that the wallet associated with a transaction is monitored only for one 
week after the transaction was completed.

If no payment is submitted at all within the 30 minutes payment window, 
the transaction will simply enter the “Cancelled” state.

The Payment Gateway API offers the following functionality to merchants:

Creates a transaction with the given values (amount, description, required 
number of confirmations, reference ID, buyer email address, postback URL, 
redirect URLs) and returns the transaction data (most importantly 
transaction ID, payment information and Status Page URL)

For the Guided Checkout Flow, the merchant would simply redirect the user 
to the Status Page URL which doubles as payment page.
Once the payment is completed or failed, the Payment Gateway will 
redirect the user to the specified redirect URLs (if any) with POST fields 
containing transaction information. Also, when the transaction status 
updates, the merchant is notified on the specified postback URL in a 
secure server-to-server call (this is the event which should trigger an order 
update on the merchant’s side).

Payment Gateway API

Blocks becoming orphaned

No payment being submitted

Create Transaction



BITCOINOTE WHITEPAPER 3011 out of

For the Embedded Checkout Flow, the merchant would render the 
payment information to the user, manually update the status displayed to 
the user and listen for relevant postback notifications in order to continue in 
the checkout process.

Returns details and status of a transaction (state, Status Page URL, user email 
if shared, amount left to pay, extraneous funds if any, flags if any, …).

Cancels a transaction. This may not be possible in all states (especially in the 
“Failed” state). If the user already paid something, the funds will become 
“extraneous funds” and Payment Gateway will attempt to process the refund 
with the buyer (or require the merchant to use the “Refund” API if no buyer 
email address is recorded).

Initiates a refund. The execution of the refund is only possible within the 
refund period and after the corresponding incoming BTCN transactions were 
confirmed. Note that for all refunds, the transaction fee will be deducted. 
This has multiple modes:

Refund address
With a refund address specified: Immediately issues the refund to that 
address (or in case the original BTCN transaction is not confirmed yet: as 
soon as the transaction was confirmed).

Without a refund address specified (only possible if a buyer email is 
recorded): Asks the buyer for a refund address via email. Once the buyer set 
their refund address (must happen before end of refund period), the refund 
is issued.

Get Transaction Status

Get Transaction Status

Refund



BITCOINOTE WHITEPAPER 3012 out of

Amount
With “refund extraneous” mode: Refunds the extraneous funds – a refund 
address should be specified (because if the Payment Gateway had known 
the buyer’s email, at that point the refund would already have been initiated 
automatically). This is usually needed in case the Payment Gateway doesn’t 
have a buyer email recorded and the merchant needs to handle a case of 
incorrect payment amounts.

With “refund all” mode: Refunds all funds currently held by Payment 
Gateway.

With specified amount: Refunds the specified amount (up to full amount 
paid, including any extraneous funds). Specified amount includes the 
transaction fee of the refund (the buyer receives the specified amount minus 
the fee).

The refund period is one week. The following activities are possible only 
during this time:

Note that all refunds are only possible once the original BTCN transaction(s) 
reached enough confirmations to be spendable again.

The merchant may initiate communication with the buyer through the 
Merchant Portal (unless the buyer has agreed to share their email with 
the merchant or the buyer has already contacted the merchant 
previously)
The merchant may initiate a refund through the Merchant Portal (after 
the refund period, the funds will already be paid out to the merchant, so 
refunds would need to be handled directly between the buyer and the 
merchant)
The Payment Gateway processes refunds for overpayment or cancelled 
transactions with the buyer
The Payment Gateway keeps monitoring the temporary wallet of the 
transaction for incoming extra payments and processes refunds of those 
with the buyer

‣

‣

‣

‣

Refund Period



BITCOINOTE WHITEPAPER 3013 out of

The buyer’s email address is collected during the Guided Checkout Flow, and 
the buyer can decide whether they want to share their email address with 
the merchant or not. In the Embedded Checkout Flow, the merchant can 
optionally provide the buyer’s email address to the Payment Gateway.
The email address is used for the following purposes:

Informational email with URL to the Status Page
Informational email when the transaction was completed
Alert emails in case an action is required:
o Not enough paid: Asks the user to submit the remaining amount
o Too much paid: Asks the user to click a link to enter a refund address
o Refund initiated by merchant without refund address: Asks the user 

to click a link to enter a refund address
Allowing the merchant to contact the buyer:
o If the user did not agree to share the email address with the buyer 

during the Guided Checkout Flow, the merchant may contact the 
buyer only during the refund period (one week), and the 
communication is proxied through Payment Gateway to keep the 
privacy of the parties. This way, the buyer can be sure that their 
email address won’t be abused for spam by a rogue merchant.

o Once the buyer replied to the merchant, the merchant may keep 
replying to the buyer for an unlimited time in the future. The buyer 
may always click a link in the emails coming from Payment Gateway 
to block further communication from the merchant regarding this 
transaction.

Allowing the buyer to contact the merchant:
o The buyer can use a link in the Status Page to contact the merchant. 

This is done through a contact form which will proxy 
communication through Payment Gateway to keep the privacy of 
the parties.

o Once the buyer contacted the merchant, the merchant may keep 
replying to the buyer for an unlimited time in the future. The buyer 
may always click a link in the emails coming from Payment Gateway 
to block further communication from the merchant regarding this 
transaction.

‣
‣
‣

‣

‣

Email Communication with Buyer



BITCOINOTE WHITEPAPER 3014 out of

The merchants have access to the Merchant Portal which allows them to 
perform the following actions:

Every transaction has a Status Page URL associated with it. This doubles as 
URL to the payment page of the Guided Checkout Flow. In case the buyer 
closes the page (especially if multiple confirmations are required for 
settlement and the user must wait for them), they may use this URL to get 
back to that page later. If the buyer entered their email address, they get this 
URL sent via email as well.

In the Embedded Checkout Flow, it’s up to the merchant to decide whether 
they want to display this URL to the user or not. They may also create their 
own status page using the “Get Transaction Status” API.

See recent transactions, their status and history
Contact the buyer:
o If the Embedded Checkout Flow was used, the email of the buyer is 

displayed if set.
o If the Guided Checkout Flow was used, the email of the buyer is only 

displayed if the buyer agreed to share their email address with the 
merchant during checkout. If not, the merchant may use a contact 
form to contact the buyer nonetheless, but only until the end of the 
refund period (one week).

Refund transactions within the refund period (one week)
Change their payout wallet address and personal details
Get reports about their transactions over time
Download a transaction list as CSV file
Contact support

‣
‣

‣
‣
‣
‣
‣

Merchant Portal

Status Page for Buyer



BITCOINOTE WHITEPAPER 3015 out of

Plugins for popular online shop platforms (such as WooCommerce) will be 
provided for simple integration on the merchant’s side.
Merchants just need to install the corresponding plugin for their platform, 
set their API key in the plugin settings and enable it as payment method.

To facilitate faster improvement cycles and support for more platforms, the 
BitcoiNote wallet is refactored and built from scratch using TypeScript.

The choice of TypeScript over JavaScript has been made to reduce the 
likelihood of bugs and errors, since TypeScript allows compiler-side type 
safety like what the C++ compiler provides to the current BitcoiNote wallet 
code.

The usage of modern web technology for the wallet will greatly speed up 
further developments and simplify error tracking, and it should enable more 
developers to participate in improvement of the BitcoiNote software on 
GitHub, as this technology is more easily accessible for developers nowadays 
and should present a lower barrier of entry.

For cryptographic functions, it still uses the relevant functions of the 
CryptoNote core which are written in C and partly C++. Depending on the 
platform, this may be implemented using a native compiled module or 

Online Shop Integration

Wallet Refractoring

Wallet improvements2



BITCOINOTE WHITEPAPER 3016 out of

transpiled code using Emscripten.

The refactored wallet will be able to load wallet files from the CLI and old 
GUI wallet software, but it will use a different format from then on. It is still 
possible to export the wallet keys, so they can be imported in the old GUI 
wallet if required.

Note that the refactored wallet would still require the use of a BitcoiNote 
Core node instance (currently there is a node integrated into the C++ GUI 
wallet). There are no plans to refactor the BitcoiNote Core as of now. The use 
of a Core node (either local or remote) will become optional once Light 
Wallet Support is added (see below).

The refactored wallet allows easier porting to new platforms. The following 
platforms will be supported:

Note that mobile and browser wallets will be possible only after Light Wallet 
Support has been added (see below).

Of course, running a wallet in a browser is not secure, as there are many 
more possible attack vectors for rogue entities than using a desktop or 
mobile wallet (for example: rogue browser extensions, man-in-the-middle 
attacks, hacked web servers, etc.). Therefore, the browser-based wallet is 
designed for testing only and will display a big warning once the balance 
exceeds 1000 BTCN, asking the user to create a new wallet on a different 
platform and to transfer all their funds to the new wallet.

Windows, Linux and macOS (using Electron)
Android and iOS (as packaged local web app)
Browser (using Emscripten for CryptoNote core functions)

New Wallet Platforms

‣
‣
‣



BITCOINOTE WHITEPAPER 3017 out of

Until now, it was impossible to use BitcoiNote on a mobile device. 
Furthermore, the GUI wallet would require downloading the whole 
blockchain to the computer before it could be used, as well as continuous 
synchronization with the network, downloading all new blocks.

There is already the option to set a “remote node” in the wallet settings. This 
would then not use the embedded node in the GUI wallet and instead talk 
to a node somewhere on another server, eliminating the requirement of 
having the whole blockchain stored on the computer. However, this still 
presents a few problems:

You would need to have a remote node available in the first place (which 
needs to be run by someone and doing so costs them network traffic)
The wallet still needs to download all new blocks and synchronize with 
the network continuously, even though those blocks won’t be stored on 
your computer
If you would have to reset your wallet or import wallet keys (both of 
which imply a reset of the last known block stored in your wallet), the 
wallet would need to download all blocks in the blockchain yet again to 
scan them for transactions regarding your wallet.

Other well-known cryptocurrencies such as Bitcoin or Litecoin solve this 
using “light wallets”. There is a de-facto standard called “Electrum” for such 
light wallets. It works by having a service which synchronizes with the 
blockchain and scanning it for relevant transactions for you, so the light 
wallet only needs to ask this service for new transactions regarding its 
address since a certain point in time instead of downloading all relevant 
blocks and scanning locally. For submitting a transaction, the wallet would 
sign it locally and send the signed transaction to the online service for 
broadcasting.

‣

‣

‣

Light Wallet Support



BITCOINOTE WHITEPAPER 3018 out of

The reason this works for other cryptocurrencies such as Bitcoin and not for 
BictoiNote is the privacy feature of CryptoNote. In Bitcoin, all the transactions 
are public – everyone can see a transaction’s amount, sender(s) and 
recipient(s) on the blockchain. This means that the Electrum server can 
efficiently index transactions by their related addresses and allow returning a 
list of transactions related to a certain address, and it can keep track of each 
address’ balance (like the Bitcoin Block Explorer allows when searching by 
address).

However, BitcoiNote’s privacy feature means that only the owner of an 
address knows that a certain input or output in a transaction is related to 
their address. This is done through ephemeral keys:

To generate an ephemeral key used to send money to:

The sender generates a new key pair, which becomes the transaction 
key. The public transaction key is included in “extra” field.
Both the sender and the receiver generate key derivation from the 
transaction key and the receivers’ “view” key.
The sender uses key derivation, the output index, and the receiver’s 
“spend” key to derive an ephemeral public key.
The receiver can either derive the public key (to check that the 
transaction is addressed to him) or the private key (to spend the money)1.

This implies that knowledge of an address owner’s view key is required to 
link a transaction to that address. For this reason, it is impossible to index the 
blockchain by address, and this makes it impossible to implement Electrum 
for BitcoiNote – the wallet always needs to download the blocks in order to 
scan them locally without exposing the view key.

BitcoiNote solves this problem with a compromise: To use a “light wallet”, the 
user must share their view key with the owner of the light wallet service.

1 CryptoNote Developers: „crypto.h”, https://github.com/
cryptonotefoundation/cryptonote/blob/
8edd998304431c219b432194b7a3847b44b576c3/src/crypto/
crypto.h#L199

‣

‣

‣

‣



BITCOINOTE WHITEPAPER 3019 out of

Note that sharing the view key only allows identifying which transactions 
belong to the address. It does not allow spending coins. The spend key still 
stays on the device of the wallet user, and the wallet only transmits 
already-signed transactions to the online service for broadcasting. The 
security risk is therefore limited.

The light wallets make use of a “Ledger Agent” which is an online service 
providing the mentioned functionality of scanning the blockchain on the 
wallet’s behalf.

The wallet opens a session with the Ledger Agent via SSL and transmits the 
user’s view key. The Ledger Agent’s SSL certificate is verified first to prevent 
man-in-the-middle attacks. The Ledger Agent stores the view key in memory 
only until the session is closed, minimizing the possible consequences of a 
data breach.

Once a session was opened, the wallet can request transaction updates 
starting with a certain block hash. The Ledger Agent then sends information 
about all transactions since the specified block which relate to this wallet, as 
well as relevant transactions in the memory pool. In case the specified block 
was orphaned, the Ledger Agent requests previous block hashes known to 
the wallet to find the point at which the chains split and then update the 
wallet from that point onwards. If the session is kept open, the Ledger Agent 
continuously pushes updates to the wallet when transactions come in or 
change their status.

To submit a transaction, the wallet signs the transaction on the device and 
then transmits the signed transaction via the open session to the Ledger 
Agent. The Ledger Agent validates the transaction and broadcasts it to the 
network.

Since the case where the Ledger Agent must scan the full blockchain for one 
wallet’s request should be eliminated (and caching of data is avoided due to 
security of the view key), it becomes very important that the creation date 
(more exactly: block height) of the wallet is known. This information is 
currently stored in wallet files but often unavailable or unreliable, for 



BITCOINOTE WHITEPAPER 3020 out of

example when keys were imported, or a wallet had to be reset. The light 
wallets will therefore ask for this information upon importing keys or when 
loading a wallet file without creation date information, and the wallets will 
make it simple to get this information from existing wallet files.

To transfer a wallet from desktop to mobile, a QR code can be displayed 
which contains the wallet keys and creation date. For other cases, the user is 
required to manually enter the keys and creation date displayed on the 
source device into the target device. Transfer of an actual wallet file is still 
preferred because this eliminates the requirement to resync the wallet since 
the creation date as all transactions are already stored in the wallet file.

The refactored wallet application can handle multiple wallets 
simultaneously, tracking all their transactions and balances. It allows to 
display them all at once as if they were one wallet, or separately. When 
sending a transaction, the user can either choose to take funds from all 
wallets as the application sees fits, or specific amounts from specific wallets.

The refactored wallet can also be used for automating the wallet operations 
in a headless mode, through an API. It basically combines the functionality 
of the CLI wallet and the existing GUI wallet.

Currently, it is inconvenient to do payments to users whose address is not 
already in one’s contact list, such as payments to online merchants. It 
requires manually copying the merchant’s address into the wallet, entering 
the correct amount and in some cases also copying the required payment ID 
into the corresponding field in the wallet. If such a payment was done 

Multi-Wallet Support

Headless Mode

One-Click Payment Setup



BITCOINOTE WHITEPAPER 3021 out of

incorrectly (for example by forgetting to set the payment ID), it can often be 
cumbersome to recover funds from the recipient. In case of an incorrect 
address, it may even be impossible.

The solution is the One-Click Payment Setup system which allows to fill in all 
the requirement information for a payment using either of the following 
options:

All these options are using a URI scheme “btcn:” with the following format:

Example:

Clicking a link. This is the simplest way and works by simply clicking a 
link in the browser which then opens the wallet and presents the “send 
transaction” page with all values already pre-filled, waiting for the user to 
click “Send”.
Copying a link into the wallet. This may be required if directly “opening” 
the link in the wallet is not supported by the browser or otherwise not 
working. The user would then click a new “From Link” button in their 
wallet’s “send transaction” page and copy the link into a field, which will 
then pre-fill the fields.
Scanning a QR code (for mobile wallets only) which contains a link. The 
user would click a new “Scan Code” button in their wallet, scan the code 
(for example displayed on a website) and see all fields pre-filled on their 
mobile wallet, waiting for the user to click “Send”.

1

2

3

btcn:[address]
?amount=[amount]
&id=[payment ID]
&label=[recipient name]
&fee=[TX fee]
&message=[description]

btcn:N3SVzasFXqJCDMWv9Py45K7gQNLXXgihFgxQyY2ruqBjRLsCkt6zUwDU
3Xb2NDMD6W9ewohbaYMtUWrFGfEKvxMjMub1GAZ?
amount=19.28315&label=Best+Exchange



BITCOINOTE WHITEPAPER 3022 out of

All parameters except for the address are optional. The recipient name is 
filled into the corresponding field in case the user wants to save it to their 
contacts (it’s not part of the transaction). The description may be displayed 
by the wallet, but this is optional. Wallets may make it optional to the user 
whether to use the provided fee or not.

This format is designed to resemble the Bitcoin URI scheme defined in 
BIP 0021 2. It is in fact compatible (except for the scheme name itself, of 
course), as optional parameters are allowed in BIP 0021.

Now, the only way to add an additional identifier to a payment is the 
payment ID. Otherwise, it is very hard to understand what a certain payment 
was used for (especially for incoming payments since their sender is not 
known). The payment ID is a 256-bit hexadecimal number, which makes it 
hard to use for transporting human-readable information. The payment ID is 
also public, anyone can see a transaction’s payment ID.

There are several new features which are designed to improve this situation:

Payment Descriptions

Since the payment ID is public, this should not be used to include sensitive 
information such as usernames, however merchant names and invoice 
numbers should be fine in most cases (as the sender and receiver address 
are still private).

The format is simple: If a payment ID’s first five bytes equal “FF FF 55 AA 00”, 
the rest of the ID is a string of up to 36 characters encoded as DEC SIXBIT 3 

Human-readable Payment IDs

2 Nils Schneider, Matt Corallo: BIP 0021 „URI Scheme“, https://
github.com/bitcoin/bips/blob/master/bip-0021.mediawiki

3 Digital Equipment Corporation, „rabbit“: DEC/PDP Character Codes, 
http://rabbit.eng.miami.edu/info/decchars.html



BITCOINOTE WHITEPAPER 3023 out of

After the “magic header bytes” in red, the green part is the encoded data. In 
binary, it would be:

Wallets and “btcn:” URIs would support both formats: a 64-character hex 
string and an up-to-36-character string of characters in ASCII range 32-95 
(encodable in DEC SIXBIT).

Regrouping it to groups of 6 bits gives:

Which decodes as:

(6 bits per character), padded with zeroes (=spaces). This means that only 
upper-case accent-less latin characters, numbers, spaces and some 
punctuation characters are allowed (ASCII range 32-95).

Example: 

In field 0x02 of the transaction extra fields (see CNS005 4 for description of 
the extra fields), the payment ID is stored. Currently, it is stored as one type 
byte plus the data. The only valid type is 0x00.

Encrypted Payment IDs

FFFF55AA00A25B2CBC1000000000000000000000000000000000000000000000

10100010 01011011 00101100 10111100 00010000 …

101000 100101 101100 101100 101111 000001 0000…

HELLO!

4 Albert Werner, Montag, Prometheus, Tereno, CryptoNote: CryptoNote 
Standard 005, https://cryptonote.org/cns/cns005.txt



BITCOINOTE WHITEPAPER 3024 out of

Encrypted payment IDs will be stored with a type of 0x01, like it is done in 
Monero 5, or 0x02 (see below). It would be visible only to the sender and 
receiver. To decrypt such a payment ID, the same algorithm is used as in 
Monero 6.

However, BitcoiNote additionally supports a 256-bit encrypted payment ID 
(not just the 64-bit ID Monero supports), so that the human-readable IDs 
defined above can also be used in an encrypted manner. For this type of 
payment ID, the first byte of extraNonce would be 0x02, while for the 64-bit 
ID, 0x01 would be used.

Of course, searching by encrypted payment ID in a block explorer is possible 
only by specifying the encrypted version of the ID instead of the cleartext 
version.

To simplify identifying payments and remembering what they were used for, 
the BitcoiNote wallet receives a feature which allows adding a free-text 
comment to any payment, incoming or outgoing. This comment is private 
and is only stored locally in the wallet file. A consequence of this is that this 
data is not shared when using a wallet on multiple devices or recreating a 
wallet from keys or QR code.

A syncing support through Dropbox or Google Drive across multiple devices 
may be added in the future to solve this problem.

5 The Monero Project: „tx_extra.h”, https://github.com/monero-project/
monero/blob/1a4298685aa9e694bc555ae69be59d14d3790465/src/
cryptonote_basic/tx_extra.h

6 MyMonero.com, „cryptonote_utils.js“: https://github.com/mymonero/
mymonero-core-js/blob/
92734c193a40b89d55822d62a2a49f39200e1e5e/cryptonote_utils/
cryptonote_utils.js#L2557

Encrypted Payment IDs



BITCOINOTE WHITEPAPER 3025 out of

To further secure funds, it’s possible to use a paper wallet. The principle of a 
paper wallet is that the spend key never enters an insecure environment.
There are two kinds of secure environments in play here:

To create a paper wallet, the offline computer environment needs to be used 
to run the paper wallet application. The “Create Paper Wallet” option would 
be used to create a new wallet in an encoded format which can be written 
on paper. The paper wallet application will ask for an optional password to 
encrypt the code with so that a thief couldn’t use the code written on paper 
to access the wallet without also knowing the password.

The code contains the two sections of data:

This data is encoded as alphanumeric code in blocks of 5 characters, using 
numbers and upper-case letters except for 1, 0, I, O and Q (to prevent 
mistakes in reading), optionally encrypted with the password specified 
before.
The user should write down or print this information.

To use the paper wallet, the user would go back to their normal environment 
and use the option “Import Paper Wallet” in their wallet, entering only the 
viewing section. The user can now view their wallet balance and transactions 
like normally.

Viewing section
o View key pair
o Creation date
o Checksum
Spending section
o Spend key pair
o Checksum

An offline computer, running a separate operating system from a secure 
live CD, read-only USB flash drive or similar medium. 
A piece of paper.

Paper Wallet Support

1

2

‣

‣



BITCOINOTE WHITEPAPER 3026 out of

When attempting to send a transaction, the wallet would ask the user to 
save the transaction data to a file, as it cannot sign the transaction without a 
spend key.

The user transfers this file to the secure environment (e.g. on another USB 
flash drive), runs the paper wallet application in the secure environment and 
uses the option “Sign Transaction”. They would then select the file which they 
transferred. They would get asked to save the now signed transaction to 
another file.

The user transfers the signed file back to their normal environment and uses 
the “Submit Signed Transaction” option in the wallet software to select the 
signed file copied from the secure environment and broadcast their 
transaction to the network.



BITCOINOTE WHITEPAPER 3027 out of

BitcoiNote receives merged mining in a way like Fantomcoin’s 
implementation 7.

It makes use of extra field 0x03 in the transaction (merged mining tag).

For merged mining, the miner builds a block for both chains (BTCN and 
parent) in a way in which the same hash calculation can secure both blocks. 
If a block is mined which meets either chain’s difficulty requirement, the 
block is assembled and submitted to the correct blockchain (or two blocks 
are submitted if both requirements are met).

First, the miner must assemble a set of transaction for both the BTCN and 
the parent chain. They then assemble the final BTCN block and hash it. A 
transaction with this hash (valid for the parent chain) is then created and 
added to the parent block’s header.

If a miner solves the hash challenge at the difficulty level of the parent chain, 
the parent block is built and sent to the network (with the parent network 
ignoring the BTCN hash).

Mining Improvements3

Merged Mining

7 FantomCoin developers, original commit with most of the merged-
mining-related changes: https://github.com/amphibia/fantomcoin/
commit/cdd89a65802387ae5d2efc5ccac77b621b9fae0b



BITCOINOTE WHITEPAPER 3028 out of

If a miner solves the hash challenge at the difficulty level of the BTCN chain, 
the BTCN chain is built, including the BTCN transactions, BTCN block header 
but also parent block header and the hash of the other transactions in the 
parent block. This is then submitted to the BTCN chain which accepts it as 
“auxiliary proof-of-work”.

This allows more effective use of hashing power and should draw more 
miners to BitcoiNote since they can mine BitcoinNote and another coin “for 
free” at the same time.

Supported coins would be those which use the same hashing algorithm 
(CryptoNight-Lite V1), currently these are: TurtleCoin, BBSCoin, AEON, 
BitSum, Iridium, Triton, Worktips

8 xmrig Developers, xmrig on GitHub: https://github.com/xmrig/xmrig

To ease access to mining, a mobile miner application is created for Android.

The application is planned to be based on xmrig 8, an open-source software. 
It must be modified for support of the CryptoNight-Lite V1 algorithm used by 
BitcoiNote, as xmrig is designed for Monero which uses the CryptoNight V1 
(not Lite) algorithm instead.

The application has a settings and status UI and runs and supervises the 
xmrig binaries in the background. Only ARM (32-bit and 64-bit) architectures 
are supported, so this application will not work on tablets based on Intel 
architectures or others.

Mobile Mining



BITCOINOTE WHITEPAPER 3029 out of

As a new user, it’s currently a bit cumbersome to get BTCN, because you 
need an account on an exchange, deposit BTC first, then buy BTCN, then 
withdraw.

To improve this situation, a CoinSwitch-like experience in form of an “Express 
Exchange” is offered: A website on which any user can exchange BTC to 
BTCN without account creation, just by providing a BTCN wallet address and 
sending a BTC payment. The Express Exchange internally interacts with an 
exchange and buys BTCN on the fly.

On the Express Exchange, the user can specify how much BTC they want to 
spend, and the website will calculate the amount of BTCN they would 
receive at the current market situation. It is based on the available sell orders 
on the market, as well as various fees.

This value is not locked however, it will be recalculated once the BTC funds 
are received and confirmed, so the initially displayed value is an 
approximation. This is done because the Express Exchange works with an 
exchange to buy the user’s BTCN, and the exchange rate of BTCN-BTC may 
be volatile, so it cannot be predicted whether the price will stay sufficiently 
stable between the initiation and the settlement of the purchase.

Once the user confirms the amount of BTC they want to spend, payment 
instructions are displayed. The user can, for example, use a QR code to do the 
BTC transfer with their wallet.

After the BTC payment was confirmed, the Express Exchange recalculates 
the amount of BTCN the user is eligible to receive at that point in time and 
issues the relevant BTCN Buy orders on an exchange. Then, the service 
triggers a withdrawal from the exchange directly to the user’s BTCN wallet.

Instant Express Exchange4



BITCOINOTE WHITEPAPER


